任何事情都看似很难,实质不难;任何事情都比你预期的更令人满意;任何事情都能办好,而且是在最佳的时刻办好。
在西部片里,我们常能看到这样的故事:某个小镇上只有一名警察,他要负责整个镇的治安。现在我们假定,小镇的一头有一家酒馆,另一头有一家银行。再假定该地有一个小偷,要实施偷盗。因为分身乏术,警察一次只能在一个地方巡逻;而小偷也只能去一个地方。假定银行需要保护的财产价格为2万元,酒馆的财产价格为1万元。若警察在某地进行巡逻,而小偷也选择了去该地,就会被警察抓住;若警察没有巡逻的地方而小偷去了,则小偷偷盗成功。警察怎么巡逻才能使效果最好?
一个明显的做法是,警察对银行进行巡逻,这样,警察可以保住2万元的财产不被偷窃。可是如此,假如小偷去了酒馆,偷窃一定成功。这种做法是警察的最好做法吗?有没有对这种策略改进的措施?
这个博弈没有纯策略纳什均衡点,而有混合策略均衡点。这个混合策略均衡点下的策略选择是每个参与者的最优(混合)策略选择。
对于这个例子,对于警察的一个最好的做法是,警察抽签决定去银行还是酒馆。因为银行的价值是酒馆的两倍,所以用两个签代表银行,比如如果抽到1、2号签去银行,抽到3号签去酒馆。这样警察有2/3的机会去银行进行巡逻,1/3的机会去酒馆。而小偷的最优选择是:以同样抽签的办法决定去银行还是去酒馆偷盗,只是抽到1、2号签去酒馆,抽到3号签去银行,那么,小偷有l/3的机会去银行,2/3的机会去酒馆。
警察与小偷之间的博弈,如同小孩子之间玩“剪刀石头布”的游戏,在这样一个游戏中,不存在纯策略均衡,对每个小孩来说,自己采取出“剪刀”、“布”还是“石头”的策略应当是随机的,不能让对方知道自己的策略,哪怕是“倾向性”的策略。如果对方知道你出其中一个策略的“可能性”大,那么你在游戏中输的可能性就大。因此,每个小孩的最优混合策略是采取每个策略的可能性是l/3。在这样的博弈中,每个小孩各取三个策略的1/3是纳什均衡。由此可见:纯策略是参与者一次性选取的,并且坚持他选取的策略;而混合策略是参与者在各种备选策略中采取随机方式选取的。在博弈中,参与者可以改变他的策略,而使得他的策略选取满足一定的概率。当博弈是零和博弈时,即一方所得是另外一方的所失时,此时只有混合策略均衡。对于任何一方来说,此时不可能有纯策略的占优策略。
启示1:没有把真正的问题找出来就盲目采取行动,是最愚蠢的做法。能够找出问题,已经可以说是把问题解决一半了。
启示2:解决问题的公式:
(1)找出问题发生的原因;
(2)分辨情报的价值;
(3)彻底推行解决方案;
(4)观察事情进行得是否顺利。
任何事情都看似很难,实质不难;任何事情都比你预期的更令人满意;任何事情都能办好,而且是在最佳的时刻办好——麦可斯韦尔定律有助你走出阴霾。